
1

 Connecting a SMARTEC temperature sensor to a 68HC11 type of
microcontroller

by H. Liefting

This application note describes how to connect the Smartec temperature sensor to a 68HC11
microcontroller. Two types of inputs are considered: The capture input and the regular input.

A. Using the capture input

The SMARTEC temperature sensor has a duty-cycle output:

 Full cycle

To be able to calculate the duty cycle, two measurements must be taken. One is the time that a full
cycle takes, the other one is the time the signal is high ('1'). Both periods can be measured with an
input capture timer.
The timer starts at the moment the input changes from logical '1' to '0'. The moment the signal goes
from '0' to '1', the timer content is stored. At the end of the period, when the signal changes from '1'
to '0' again, the timer content is stored once more. Now we can calculate the duty cycle.
The time that a full cycle takes (tc) and the time the signal is high (th) are available now in units of
0.5ms. These times must be used to calculate the sensor temperature. The data sheet of the sensor
gives us the formula:

duty cycle (d.c.)= 0.31924 + 0.00472 x Temperature (oC)

So the temperature is: 211.9 x (d.c. - 0.31924). To keep things simple, we will eliminate the
decimals by multiplying with 216 (65536) on both sides of the formula:

Temperature x 65536 = 211.9 x (216 x d.c. - 20922),

or:

309 x Temperature = 216 x d.c. - 20922

The variable d.c. x 216 can be calculated by: the time that the signal is high divided by the time a full
cycle takes, and use the 'fdiv' instruction for the division operation. The 'fdiv' instruction will divide
two 16-bit numbers after multiplying the divident with 216. This is exactly what we need. From the
result of this calculation we must subtract 20922. Then we have 309*temperature. A temperature

‘1’

2

of 25 degrees would yield the number 25 x 309 = 7725. It is simple to use these numbers for
further calculations.
The frequency of the output signal of the sensor lies between 1 and 4 kHz. This means that every
ms there is a new measured value available. That is much more than usually required. We benefit
from this by measuring not a single period, but i.e. 100 periods and taking the average.

* Temperature measurement

* During 'still_to_do' periods of the inputsignal the measurement accumulates:
* - the periodtimes in 'periodsum'
* - the time the signal is a '1' in 'signalsum'

* At the end of each period, 'still_to_do' is lowered by 1.
* If 'still_to_do' reaches 0, the measurement is done and the sums will no
* longer be adjusted. The flag 'meas_on' will be reset.

* To start a measurement:
* - the flag 'meas_on' has to be set to '1'
* - 'still_to_do' has to be initialized with the number of periods
* that have to be averaged during the measurement
* - the sums 'periodsum' and 'signalsum' must be set to 0
PROGRAM space

* data area for the temperature measurement
DATA space
still_to_do rmb 1 |number of periods to accumulate
meas_on rmb 1 |flag to indicate the measurement is running
periodsum rmb 3 |accumulates period times
signalsum rmb 3 |accumulates '1' time of the signal

* storage for internal use
periodstart rmb 2 |startingtime of a period
starttime1 rmb 2 |time at which the signal became '1'

* initialization of the temperature measurement
PROGRAM space
 clr meas_on
 clr still_to_do |no measurement active
 ldab #$7E |initialize the interrupt vector
 stab tic1int
 ldd #sensorint
 std tic1int+1
 ldx #regsbeg |start measuring a falling edge
 bclr tctl2-regsbeg,x,edg1a
 bset tctl2-regsbeg,x,edg1b
 ldab #ic1f clear possibly pending interrupt
 stab tflg1-regsbeg,x

3

 bset tmsk1-regsbeg,x,ic1i
 jmp tempend |end of the initialization

* subroutines for the temperature measurement
PROGRAM space

******* input capture interrupt routine *******
sensorint equ $
 ldx #regsbeg |let IX point at the I/O registers
* first reset the interrupt-flag
 ldab #ic1f
 stab tflg1-regsbeg,x
* find out if it was a rising or a falling edge
 brclr tctl2-regsbeg,x,edg1a,sensorint1

* if it is a rising edge, we're in the middle of a measurement
* make a note of the time at which the edge occurred
 ldd tic1-regsbeg,x
 std starttime1
* then wait for a falling edge
 bclr tctl2-regsbeg,x,edg1a
 bset tctl2-regsbeg,x,edg1b
 bra sensorint9

* if it is a falling edge, we're at the end of a period
* the end of one period is also the start of the new period
sensorint1 equ $
 tst meas_on |check if the measurement should be taken
 beq sensorint4
* when the measurement must be taken:
* accumulate the total time the signal was '1'
 ldd tic1-regsbeg,x
 subd starttime1
 addd signalsum+1
 std signalsum+1
 ldaa signalsum
 adca #0
 staa signalsum
* accumulate the total period time
 ldd tic1-regsbeg,x
 subd periodstart
 addd periodsum+1
 std periodsum+1
 ldaa periodsum
 adca #0
 staa periodsum
* one more period done, one less to do
 dec still_to_do
 bne sensorint4

4

* if no more periods have to be measured, the measurement is ready
 clr meas_on
* make a note of the time at which the new period started
sensorint4 ldd tic1-regsbeg,x
 std periodstart
* wait for a rising edge
 bset tctl2-regsbeg,x,edg1a
 bclr tctl2-regsbeg,x,edg1b
sensorint9 rti

* start a measurement of 100 periods
startmeas equ $
 tpa |save the condition-code register on the stack
 psha |(using A)
 sei |temporarily block the interrupts
 ldaa #100
 staa still_to_do
 ldd #0
 std periodsum |clear the results
 staa periodsum+2
 std signalsum
 staa signalsum+2
 ldab #1 |start the measurement
 stab meas_on
 pula |retrieve the condition-code register
 tap |from the stack (using A)
 rts

***** routines for use by the main program
PROGRAM space

* Measure the temperature, and leave the result in D. This result is
* the number of degrees (in Celcius) * 309
grad equ 309
meas_temp equ $
 pshx |save IX on the stack
 bsr startmeas |start a measurement of 256 periods
meas_temp0 tst meas_on |wait until the measurement is ready
 bne meas_temp0
mess_temp1 ldab periodsum |scale both times back to values that
 orab signalsum |will fit in 16 bits
 beq meas_temp2 |do this by dividing both values by 2
 lsr periodsum |until both are within the 16-bit range
 ror periodsum+1
 ror periodsum+2
 lsr signalsum
 ror signalsum+1
 ror signalsum+2
 bra mess_temp1

5

meas_temp2 ldx periodsum+1
 ldd signalsum+1
 fdiv |calculate the duty-cycle
 xgdx |put the result into D
 subd #20922 |then correct (see explanation in handbook)
 pulx |retrieve IX from the stack
 rts
B. Using the regular input

An input capture timer is the preferred input for a SMARTEC temperature sensor. However the
SMARTEC sensor can also be connected to a regular input. The program will then have to scan
the input, and determine the signal/period ratio from the scanned signal. Do this by accumulating
the number of samples, and the number of times the signal was '1', and dividing one by the other.
There are a few things to take into account when this approach is used:
The resolution of the measurement is determined by the number of samples that is used to calculate
the duty cycle. Since the scanning process is comperatively slow, it is not possible to accumulate a
large number of samples in a reasonable amount of time. A small number of samples will yield a less
accurate calculation of the duty cycle, and hence of the temperature. A larger number of samples
can be accumulated from a number of scans. In that case, the measured value will be less
responsive to changes in the temperature.
An important factor to keep in mind, is that there should be absolutely no relation between the
sensor signal and the sampling process. If the frequency of the sensor signal is (some multiple of)
the frequency with which the signal is scanned, you will get false results. Note, that the frequency
of the sensor signal varies with temperature. Make sure that the input is scanned at a random time
within the sensor signal period.
The following code can be called by a main program to measure the temperature. In this example it
is assumed that the measurement routine is called as part of some main scanning loop that is called
at fixed intervals. To make sure the measurement routine is called at a random time within the
smartec's cycle, a random delay was introduced in the measurement routine. If you can be sure you
call the measurement routine at random times, you can ommit the internal random delay.
The measured values from all the measurements are accumulated, so the reading of the temperature
will be an average of a relatively large number of samples, and will not respond quickly to changes
in the temperature. If you need to detect changes quickly, do not accumulate the samples from
consequetive measurements, but clear the accumulators before each measurement.

* Maximum length random generator

* The random generator is implemented as a 7-bit shift
* register that has the XOR of bit6 and bit5 fed back to bit0.

DATA space
seed rmb 1 |the shift register's seed

PROGRAM space
** initialisation
 ldaa #1

6

 staa seed |init. the register to anything but 0
 jmp randomend

******* get a random number (1..127) from the generator into (B)
getrandom equ $
 ldab seed |get current seed
 aslb |shift left to XOR bit6 with bit5
 eorb seed
 aslb
 aslb |resulting bit is now in the carry flag
 rol seed |rotate new bit into shift register
 ldab seed |get the new random number
 andb #$7F
 rts

randomend equ $

* Temperature measurement

* The measurement accumulates:
* - the number of times a sample was taken in 'periodsum'
* - the number of times the signal was a '1' in 'signalsum'
* Whenever one of these two accumulators grow beyond 65535 (16 bits)
* both will be divided by 2.
PROGRAM space
tempstart equ $ |the starting address of this module

* data area for the temperature measurement
DATA space
periodsum rmb 3 |counts samples taken
signalsum rmb 3 |counts samples valued '1'

* initialization of the temperature measurement
PROGRAM space
 ldd #0
 std periodsum |clear the counters
 staa periodsum+2
 std signalsum
 staa signalsum+2
 jmp tempend |end of the initialization

* subroutines for the temperature measurement
PROGRAM space

******* take one sample from the sensor
take_sample equ $
 ldab porta |get the signal into bit0 of accumulator (B)

7

 asrb
 asrb
 andb #bit0 |mask out only the smartec signal
 clra |add sample to accumulator
 addd signalsum+1
 std signalsum+1
 ldaa signalsum
 adca #0
 staa signalsum
 ldd #1 |add one more sample to the sample counter
 addd periodsum+1
 std periodsum+1
 ldaa periodsum
 adca #0
 staa periodsum
 rts

******* take a number of consequetive samples from the sensor
******* the number of samples to take is expected in (B)
take_samples equ $
 pshb |take the required number of samples
 bsr take_sample
 pulb
 decb
 bne take_samples
take_samples0 ldab periodsum |scale both accumulators back to values that
 orab signalsum |will fit in 16 bits
 beq take_samps9 |do this by dividing both values by 2
 lsr periodsum |until both are within the 16-bit range
 ror periodsum+1
 ror periodsum+2
 lsr signalsum
 ror signalsum+1
 ror signalsum+2
 bra take_samples0
take_samps9 rts

* Measure the temperature, and leave the result in D. This result is
* the number of degrees (in Celcius) * 309
meas_temp equ $
 pshx
 jsr getrandom |get a random number into (B)
meas_temp0 decb |and use that to generate a random delay
 bne meas_temp0
 ldab #50
 bsr take_samples
 ldx periodsum+1
 ldd signalsum+1
 fdiv |calculate the duty-cycle

8

 xgdx |put the result into D
 subd #20922 |then correct (see explanation in handbook)
 pulx |retrieve IX from the stack
 rts

tempend equ $ |end of this module

* the number of bytes this module requires in the PROGRAM area
tempsize equ tempend-tempstart

