

Quad ISDN 4B3T Echocanceller Digital Frontend DFE-T

PEB 24901 Versions 1.1/1.2

Addendum/Corrections 07.99 to the prel. Data Sheet 02.95 (Version 1.1) and to the Delta Sheet 06.96 (Version 1.2)

1 Electrical Characteristics

Testconditions:

VDD = 4.75 to 5.25 V

Ambient temperature under bias:PEB 249010 to 70 °CPEF 24901- 40 to 85 °C

1.1 Static Characteristics

Parameter	Symbol	Limit Values		Unit	Test
		min.	max.		Condition
High-level input voltage	V_{IH}	2.0	$V_{\rm DD}$ + 0.3	V	
Low-level input voltage	V_{IL}		0.8	V	
Low-level input leakage current	I _{IL}	-1		μA	$V_{\rm I} = {\rm GND}$
High-level input leakage current	I _{IH}		1	μA	$V_{I} = VDD$
Low-level leakage current pull up pins	I _{IT}	-500		μA	$V_{\rm I} = {\sf GND}$
High-level output voltage (except DOUT, relay driver pins D0A D3D)	V _{OH1}	2.4		V	I _{OH1} = 0.4 mA

Infineon Technologies

DS 1

© 1999 Infineon Technologies AG. All Rights Reserved.

Revision History: Previous Version: Major Changes:

Please note that any information contained in this publication may be subject to change. Infineon Technologies reserves the right to make changes to or to discontinue any product or service identified in this publication without notice. Please contact our regional offices to receive the latest version of the relevant information to verify, before placing orders, that the information being relied upon is current.

All brand or product names, hardware or software names are trademarks or registered trademarks of their respective companies or organizations.

Parameter	Symbol	Limit Values		Unit	Test
		min.	max.		Condition
High-level output voltage for DOUT	V _{OH2}	3.5		V	IOH2 = -6 mA
High-level output voltage for relay driver pins D0A D3D	V _{OH3}	2.4		V	IOH3 = -2 mA
Low-level output voltage	V _{OL1}		0.4	V	IOL1 = 2 mA
Low-level output voltage for DOUT	V _{OL2}		0.5	V	IOL1 = 7 mA
Input capacitance	C _{IN}		10	pF	

Note: Inputs at VDD/GND

1.2 Dynamic Characteristics

Ambient temperature under bias range, $V_{DD} = 5 \text{ V} \pm 5 \%$.

Inputs are driven to 2.4 V for a logical '1' and to 0.4 V for a logical '0'. Timing measurements are made at 2.0 V for a logical '1' and at 0.8 V for a logical '0'. The AC-testing input/output wave forms are shown below. The test load is 100pF, unless otherwise indicated.

Figure 1 I/O-Wave Form for AC-Test

IOM-2 Timing

In case the period of signals is stated the time reference will be at 1.4 V; in all other cases 0.8 V (low) and 2.0 V (high) thresholds are used as reference.

The dynamic characteristics of the IOM-2-interface is given in figure 2.

Figure 2	IOM [®] -2	Timing	of IOM-2	Interface	(Detail)
----------	---------------------	--------	----------	-----------	----------

Table 1	IOM [®] -2 Dynamic Input Characteristics
---------	---

Parameter	Signal	Symbol	Limit Values		Unit
			min.	max.	
Data clock rise/fall	DCL	t _r , t _f		60	ns
Clock period		T _{DCL}	122		ns
Pulse width high/low		t _{wH} t _{wL}	53 53		ns ns
Frame synch. rise/fall	FSC	t _r , t _f		60	ns
Frame setup		t _{sF}	30		ns
Frame hold		t _{dF}		$t_{\rm wL} - 30$	ns
Frame width high/low ¹⁾		t _{wFH} t _{wFL}	$\begin{array}{c} 100 \\ 2 \times T_{\text{DCL}} \end{array}$		ns
Data setup	DIN	t _{sD}	t _{wH} + 20		ns
Data hold		t _{hD}	50		ns

Note: This is in accordance with the IOM-timing specification. For correct functional operation the high period must be $1 \times T_{DCL}$ for superframe markers and at least $2 \times T_{DCL}$ for non-superframe markers.

Table 2 IOM[®]-2 Dynamic Output Characteristics

Parameter	Signal	Symbol	Limit Values			Unit	Test Condition
			min.	typ.	max.		
Data delay/clock 1)	DOUT	t _{dDC}			100	ns	<i>C</i> _L = 150 pF
Data delay/frame 1)	DOUT	t _{dDF}			150	ns	<i>C</i> _L = 150 pF

Note: The point of time at which the output data will be valid is referred to the rising edges of either FSC (t_{dDF}) or DCL (t_{dDC}). The rising edge of the signal appearing last (normally DCL) shall be the reference.

Boundary Scan Timing

Figure 3 Boundary Scan Timing

Addendum/Corrections

Parameter	Symbol	Limit	Values	Unit
		min.	max.	
test clock period	t _{TCP}	160	-	ns
test clock period low	t _{TCPL}	70	-	ns
test clock period high	t _{TCPH}	70	-	ns
TMS set-up time to TCK	t _{MSS}	30	-	ns
TMS hold time from TCK	t _{MSH}	30	-	ns
TDI set-up time to TCK	t _{DIS}	30	-	ns
TDI hold time from TCK	t _{DIH}	30	-	ns
TDO valid delay from TCK	t _{DOD}	-	60	ns

Table 3 Boundary Scan Dynamic Timing Requirements

Interface to the Quad IEC AFE

The AC characteristics of the AFE-interface pins are optimized to fit to AFE Versions 1.1/ 1.2/2.1 if the following loads are no exceeded. It is required, that both devices are supplied by the same 5 Volt source (VDD).

Table 4Interface Signals of AFE and DFE-T

Pin	Signal Driving Device	Max. Capacitve load
CL15	AFE	50 pF
SDR	AFE	20 pF
PDM14	AFE	20 pF
SDX	DFE-T	20 pF

1.3 Power Supply

Supply voltages

 $V_{\rm DD}$ = + 5 V ± 0.25 V

Power Consumption

All measurements with random 2B + D data in active states.

Mode	Test conditions	Typ. values	Max. values	Unit
Power-up all Channels ?	5.00 V, open outputs, inputs at $V_{\rm DD}/V_{\rm SS}$	50	70	mA
Power-down	5.00 V, open outputs, inputs at $V_{\rm DD}$ / $V_{\rm SS}$	15	25	mA

1.4 Absolute Maximum Ratings

Parameter	Symb ol	Limit Values	Unit
Ambient temperature under bias: PEB PEF	T _A	0 to 70 - 40 to 85	°C
Storage temperature	$T_{ m stg}$	- 65 to 125	°C
Supply voltage	V_{DD}	$-0.3 < V_{\rm DD} < 7.0$	V
Input voltage	V_{I}	$-0.3 < V_{\rm I} < V_{\rm DD} + 0.3 ({\rm max.}7)$	V
Output voltage	Vo	$-0.3 < V_{\rm O} < V_{\rm DD} + 0.3$ (max 7)	V
Max. voltage between different GND pins	V _S	± 250	mV
Max. voltage between different VDD pins	Vs	± 250	mV
Storage temperature	T _{stg}	– 65 to 125	°C
Ambient temperature PEB 24901 PEF 24911	T_{A} T_{A}	0 to 70 - 40 to 85	°C °C
Thermal resistance (system-air) (system-case)	$R_{ m th~SA}$ $R_{ m th~SC}$	55 15	K/W K/W

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to conditions beyond those indicated in the recommended operational conditions of this specification may affect device reliability. This is a stress rating only and functional operation of the device under those conditions or at any other condition beyond those indicated in the operational conditions of this specification is not implied. It is not implied, that more than one of those conditions can be applied simultaneously.