C3141 SERIES HALL-EFFECT SWITCH ICs

C3141 series Hall-effect switch integrated circuits for high temperature operating based on Hall-effect principle, apply the semiconductor monolithic technology, which includes a voltage regulator, Hall voltage generator, differential amplifier, Schmitt trigger and an open-collector output on a single silicon chip. ICs can convert the input magnetic field signal into digital voltage output.

FEATURES

- Small size
- High Sensitivity
- Quick Response
- Good Temperature Performance
- High Accuracy
- Excellent Reliability

TYPICAL APPLICATION

- Non-contact Switch
- ◆Automotive Ignition
- ◆Brake ICs
- Position control
- Revolution detection
- ♦ Safe alarm device
- ◆Textile control system

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit	
Supply Voltage	Vcc	28	V	
Quiescent Output Voltage	Vo	28	V	
Output Current	lo	25	mA	
Operating Temperature Range	T _A	-40~85	°C	
Storage Temperature Range	Τs	-65~150	°C	

ELECTRICAL CHARACTERISTICS

Magnetic-Electrical Transfer Characteristics

Parameter	Test Condition	Symbol	Value			Linit
Falametei		Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc=4.5V~24V	V _{cc}	4.5	-	24	V
Output Low Voltage	Vcc=4.5v, Vo=24V Io=20mA, B≥B _{OP}	V _{OL}	-	175	400	mV
Output Leakage Current	Vo=24V, B <b<sub>RP</b<sub>	I _{ОН}	-	<1.0	10	μA
Supply Current	Vcc=24V, Vo open-collector output	lcc	-	3.0	9.0	mA
Output Rise time	Vac-12V/ B -8200 C -20pE	tr	-	0.2	2.0	μS
Output Fall time	$V \cup - 12V, R_1 - 02U U U_1 - 2U P $	tf	-	0.18	2.0	μS

FUNCTIONAL BLOCK DIAGRAM

Magnetic Characteristics

Parameter		Min (mT)	Typ (mT)	Max (mT)
Operate Point (B _{OP})	T _A =25℃	5.0	10.0	16.0
	Full Operating Temperature Range	3.0	10.0	17.5
Release Point (B _{RP})	T _A =25℃	1.0	4.5	13.0
	Full Operating Temperature Range	1.0	4.5	14.5
Hysteresis (B _H)	T _A =25℃	2.0	5.5	8.0
	Full Operating Temperature Range	2.0	5.5	8.0

Package Outline Drawing (Unit: mm)

Pin Notes: 1. Power Supply, 2. Ground, 3. Output

Cautions:

- 1) It is possible that outside mechanical stress affects the operating point and the release point of Hall-effect circuit, therefore, mechanical stress should be lessened as far as possible in the process of assembly;
- 2) Pay attention to the soldering temperature at the leads; keep it lower in a short time to guarantee good soldering quality.